Permeable Pavement Overview

Meeting of CCPIC City of Berkeley City of Davis City of Martinez

6 April 2018

Permeable Pavement Team and Sponsors

- Contributors to published work presented:
 - David Jones, Hui Li, Rongzong Wu, Erol Tutumleur (UIUC), Masoud Kayhanian, Lin Chai, Ting Wang, Bruce Campbell, Erik Dennemen, UCPRC lab & HVS crews
- Work sponsored by:
 - Concrete Masonry Association of California and Nevada
 - Interlocking Concrete Pavement Institute
 - California Department of Transportation

Permeable Pavement for Stormwater Management

- Impervious pavement in urban areas contributes to
 - Water pollution (oil, metal, etc.)
 - Reduced groundwater recharge
 - Increased risk of flooding
 - Local heat island effect (*less evaporation*)
- Gaps to be filled
 - Designs for heavy vehicles
 - Cost and environmental impact comparisons
 - Other obstacles to successful use and implementation

Permeable Pavement Studies by UCPRC

- Goal: Mechanistic based design methods for heavy vehicle applications, fill other gaps
- Studies by UCPRC
 - Caltrans Study (2008-2010)
 - Hydraulic and structural design method and tables for permeable concrete and asphalt pavements
 - Not yet validated with traffic
 - CMACN / ICPI Study (2013-2014)
 - Design method and tables for PICP
 - Validated with Heavy Vehicle Simulator
 - Caltrans Study (underway)
 - Survey of experience and knowledge regarding permeable pavements

General Concept Shoulder or Traveled Way

Permeable surface (Interlocking Conc Pavers, HMA-O or PCC-O or PCC with holes) *Fatigue (except for pavers)*

Granular reservoir layer Rutting (Shear Stress/Strength Ratio)

Optional permeable 15 cm PCC-O subbase

Lightly compacted subgrade Rutting (Shear Stress/Strength Ratio)

Caltrans Study: Hydraulic profile of water content for LA area: permeable shoulder

Permeable

Date

Rain Volume/Surface Area (mm)

Los Angeles 1998 Permeable Shoulder only

Caltrans Studies: LCCA, LCA

- LCCA
 - Realcost for LCCA
 - BMP costs from Caltrans reports
 - Permeable pavement costs from Teichert
 - 40 year analysis, discount rates, agency costs
- LCA
 - Framework produced for future LCAs
- Field measurements of clogging on older projects
 - Concrete only

Caltrans Studies: Key Findings: LCCA

- Shoulder Retrofit of Impermeable Road
 - Drains two lanes
 - 0.75 x cost of lowest cost BMP
 - Drains three or more lanes
 - 0.5 x cost of lowest cost BMP
- Maintenance yard/parking lot
 - Same cost as lowest cost BMP
 - -0.15 x cost of highest cost BMP

Caltrans Studies: Structural Design

- Scope
 - Base/reservoir/permeability design for three regions
 - HMA-O/PCC-O/Cast PCC slab for two regions
 - With and without PCC-O subbase below reservoir
- HMA-O
 - Three part process
 - Determine base/reservoir thickness based on subgrade permeability & rainfall
 - Determine HMA thickness
 - Check subgrade stress to subgrade strength ratio
- PCC-O and Concrete Slabs with Holes
 - Two part process
 - Determine base/reservoir thickness
 - Determine PCC-O thickness for given slab length

ICPI Study

- Study approach
 - Literature review
 - Field testing
 - Test track design
 - Test track construction
 - Accelerated load testing
 - Data Analysis
 - Design method & tool
 - Design tables
 - Final report
 - includes interim reports

December 2014 Research Report: UCPRC-RR-2014-04

Development and HVS Validation of Design Tables for Permeable Interlocking Concrete Pavement: Final Report

> Authors: H. Li, D. Jones, R. Wu, and J. Harvey

Concrete Masonry Association of California and Nevada. Grant Agreement UCPRC-PP-2011-01

PREPARED FOR:

PREPARED BY:

Concrete Masonry Association of California and Nevada University of California Pavement Research Center UC Davis, UC Berkeley

ICPI Study: Mechanistic approach

- Distress
 - Unbound layer rutting
- Approach
 - Shear stress to shear strength ratio (SSR) at top of layer
 - $-0.3 \leq SSR \leq 0.7$
- Required inputs
 - Unbound layer stiffness, strength, and other mechanical properties
 - Obtained from lab and field testing

Shear Stress Ratio (SSR) =
$$\frac{\tau_f}{\tau_{max}}$$

 $\tau_f = \frac{\sigma_1 - \sigma_3}{2} \cos\phi = \frac{\sigma_d}{2} \cos\phi$
 $\tau_{max} = c + \sigma_f tan\phi$
 $\sigma_f = \frac{\sigma_1 + \sigma_3}{2} - \frac{\sigma_1 - \sigma_3}{2} \sin\phi = \frac{\sigma_d + 2\sigma_3}{2} - \frac{\sigma_d}{2} \sin\phi$

ICPI Study: Test sections

Surface: 80 mm interlocking concrete paver Bedding layer: 50 mm ASTM #8 aggregate Base layer: 100 mm ASTM #57 aggregate Subbase layer: Varying thickness ASTM #2 aggregate Subgrade soil: Silty clay, compacted after excavation

Subbase	Shear	Calculated (mm)		
Thickness	Stress			As-
	Ratio	Dry	Wet	Built
	(SSR)			
Thin	0.8	450	650	450
Medium	0.5	800	950	650
Thick	0.2	1,350	1,450	950

ICPI Study: Cross sections

ICPI Study: Instrumentation

- Aggregate size limited options
- Stress (pressure cell)
 - Top of base
 - Top of subgrade
- Deformation (profiler + dipsticks)
 - Surface
 - Top of base
 - Top of subgrade
- Deflection (RSD)
- Water level
 - Manual and automated

ICPI Study: Testing conditions

- Extended HVS (13m) used to test all sub sections together
 - Bidirectional trafficking with wander
 - Wheel load range from 25kN to 80kN
- Three testing conditions
 - Dry
 - Wet: water table maintained at the top of the subbase
 - Drained: Wet subgrade, no water in the subbase
 - All testing at ambient temperature
- Failure criteria
 - >25 mm of surface rut

ICPI Study: HVS testing

ICPI Study: HVS testing

HVS Results: 450 mm

HVS Results: 950 mm

ICPI Study: APT conclusions & use

- Conclusions:
 - Most rutting in top of subbase when wet at very high loads (close to 2x legal limit)
 - Adjust bedding layer design
 - Subgrade rutting diminished by increased subbase (reservoir) thickness
- Rutting models
 - Incremental-recursive models for each layer
 - Laboratory test data and layer elastic theory
 - Shear stress/strength ratio (SSR)

ICPI Study: Design tool

- Design tool developed (*Excel*[®] spreadsheet)
 - Number of days with water in the subbase
 - Material properties
 - Traffic and load spectra
- Tool used to validate ICPI design tables
 - Less conservative than current ICPI for dry conditions
 - Slightly more conservative for very wet conditions

Caltrans Survey of Local Agencies (underway)

Caltrans Survey of Local Agencies (underway)

Getting the Permeable Pavement Results

- Pervious Concrete and Porous Asphalt for Heavy Traffic
 - Preliminary permeable pavement designs that can be tested in pilot studies under typical California traffic and environmental conditions
 - <u>http://www.ucprc.ucdavis.edu/PDF/U</u>
 <u>CPRC-RR-2010-01.pdf</u>
- Permeable Interlocking Concrete Pavement for Heavy Traffic
 - Design method and validation results
 - Being incorporated into ICPI and ASCE designs
 - <u>http://www.ucprc.ucdavis.edu/PDF/U</u>
 <u>CPRC-RR-2014-04.pdf</u>

Questions?

